A Renyi s Backward Continued Fraction Map

Abstract

We introduce and study in detail a special class of backward continued fractions that represents a generalization of Rényi continued fractions. We investigate the main metrical properties of the digits occurring in these expansions and we construct the natural extension for the transformation that generates the Rényi-type expansion. We also define the random system with complete connections associated with the underlying dynamical system whose ergodic behaviour allows us to prove a variant of Gauss–Kuzmin-type theorem.

References

  1. Adler, R., Flatto, L.: Geodesic flows, interval maps, and symbolic dynamics. Bull. Amer. Math. Soc. 25, 229–334 (1991)

    MathSciNet  Article  Google Scholar

  2. Barnsley, M.F., Demko, S.G., Elton, J.H., Geronimo, J.S.: Invariant measures for Markov processes arising from iterated function systems with place-dependent probabilities. Ann. Inst. Henri Poincaré Probab. Statist. 24, 367–394 (1988)

    MathSciNet  MATH  Google Scholar

  3. Boyarsky, A., Góra, P.: Laws of Chaos: Invariant Measures and Dynamical Systems in One Dimension, Birkhäuser. Boston (1997)

    Book  Google Scholar

  4. Burton, R., Kraaikamp, C., Schmidt, T.: Natural extensions for the Rosen fractions. Trans. Amer. Math. Soc. 352, 1277–1298 (2000)

    MathSciNet  Article  Google Scholar

  5. Doeblin, W.: Remarques sur la théorie métrique des fractions continues. Compositio Math. 7, 353–371 (1940)

    MathSciNet  MATH  Google Scholar

  6. Gröchenig, K., Haas, A.: Backward continued fractions, Hecke groups and invariant measures for transformations of the interval. Ergodic Theory Dynam. Systems 16, 1241–1274 (1996)

    MathSciNet  Article  Google Scholar

  7. Haas, A.: Invariant measures and natural extensions. Canad. Math. Bull. 45, 97–108 (2002)

    MathSciNet  Article  Google Scholar

  8. Haas, A., Molnar, D.: Metrical diophantine approximation for continued fraction like maps of the interval. Trans. Amer. Math. Soc. 356, 2851–2870 (2004)

    MathSciNet  Article  Google Scholar

  9. Iosifescu, M., Grigorescu, S.: Dependence With Complete Connections and its Applications, 2nd edn. Cambridge Univ, Press (Cambridge (2009)

    MATH  Google Scholar

  10. M. Iosifescu and C. Kraaikamp, Metrical Theory of Continued Fractions, Kluwer Academic Publishers (Dordrecht, 2002)

  11. M. Iosifescu and G.I. Sebe, On Gauss problem for the Lüroth expansion, Indag. Math. (N.S.), 24 (2013), 382–390

    MathSciNet  Article  Google Scholar

  12. M. Iosifescu and R. Theodorescu, Random Processes and Learning, Springer-Verlag (Berlin, 1969)

    Book  Google Scholar

  13. M. S. Keane, T. Bedford and C. Series (Eds.), Ergodic theory, symbolic dynamics, and hyperbolic spaces, Oxford University Press (Oxford, 1991)

  14. Lascu, D.: On a Gauss-Kuzmin-type problem for a family of continued fraction expansions. J. Number Theory 133, 2153–2181 (2013)

    MathSciNet  Article  Google Scholar

  15. Ma, L., Nair, R.: Haas-Molnar continued fractions and metric Diophantine approximation. Proc. Steklov Inst. Math. 299, 157–177 (2017)

    MathSciNet  Article  Google Scholar

  16. Nakada, H.: Metrical theory for a class of continued fraction transformations and their natural extensions. Tokyo J. Math. 4, 399–426 (1981)

    MathSciNet  Article  Google Scholar

  17. Rényi, A.: Algorithms for representating real numbers. MTA Mat. Fiz. Oszt. Közl. 7, 265–293 (1957). (in Hungarian)

    Google Scholar

  18. C. Ryll-Nardzewski, On the ergodic theorems. II (Ergodic theory of continued fractions), Studia Math., 12 (1951), 74–79

    MathSciNet  Article  Google Scholar

  19. Sebe, G.I.: On convergence rate in the Gauss-Kuzmin problem for grotesque continued fractions. Monatsh. Math. 133, 241–254 (2001)

    MathSciNet  Article  Google Scholar

  20. G. I. Sebe and D. Lascu, A Gauss–Kuzmin theorem and related questions for \(\theta \)-expansions, J. Function Spaces (2014), Art. ID 98046112, 12 pp

  21. G. I. Sebe and D. Lascu, Convergence rate for Rényi-type continued fraction expansions, submitted

  22. Series, C.: The modular surface and continued fractions. J. London Math. Soc. 2, 69–80 (1985)

    MathSciNet  Article  Google Scholar

  23. Wirsing, E.: On the theorem of Gauss-Kuzmin-Lévy and a Frobenius-type theorem for function spaces. Acta Arith. 24, 506–528 (1974)

    Article  Google Scholar

Download references

Acknowledgement

The authors thank the referee for carefully reading our manuscript and for giving us such constructive comments. These helped us to improving the quality of the paper.

Author information

Authors and Affiliations

Corresponding author

Correspondence to D. Lascu.

About this article

Verify currency and authenticity via CrossMark

Cite this article

Lascu, D., Sebe, G.I. A dependence with complete connections approach to generalized Rényi continued fractions. Acta Math. Hungar. 160, 292–313 (2020). https://doi.org/10.1007/s10474-019-00974-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI : https://doi.org/10.1007/s10474-019-00974-x

Key words and phrases

  • Rényi continued fraction
  • Perron–Frobenius operator
  • random system with complete connections
  • Gauss–Kuzmin problem

Mathematics Subject Classification

  • 11J70
  • 28D05
  • 37A30
  • 60A10

brownsament.blogspot.com

Source: https://link.springer.com/article/10.1007/s10474-019-00974-x

0 Response to "A Renyi s Backward Continued Fraction Map"

Post a Comment

Iklan Atas Artikel

Iklan Tengah Artikel 1

Iklan Tengah Artikel 2

Iklan Bawah Artikel